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Abstract  —  The use of residential PV grid-tie inverters to 

supply reactive power as a benefit to the distribution grid has 

been widely proposed, however, there is little insight into how 
much of a benefit can be achieved from this control under 
varying system operating points. This paper seeks to demonstrate 

the effectiveness of a linearized versus nonlinear reactive power 
dispatch solution on a highly unbalanced distribution feeder 
under differing load profiles, insolation levels, and penetration 

rates of PV in the feeder. The results are analyzed to determine 
the system operating points that are favorable to reactive power 
control and the overall effectiveness of each solution in realistic 

feeder states. 

Index Terms — photovoltaic systems, reactive power control, 
voltage control, particle swarm optimization. 

I. INTRODUCTION 

Photovoltaic (PV) energy generation continues to be one of 

the fastest growing sectors of the energy mix. Residential 

rooftop PV is a particularly fast growing sector and many 

medium voltage residential distribution networks already have 

over 25% penetration of PV generators [1][2]. This rapid 

growth is outpacing utility interconnection standards, which 

still consider the small rooftop PV units to be of insignificant 

size, but collectively the PV are beginning to pose a number of 

stability and power quality problems in low- and medium-

voltage distribution networks [3][4]. One potential solution to 

mitigate the problems caused by abundant PV is to use the 

spare reactive power capacity of their grid-tie inverters 

collectively to benefit the distribution network as a whole. 

Current interconnection standards do not allow for dynamic 

reactive power control of small-scale distributed PV, however, 

there are indications that this standard may change soon and 

indeed many new inverters are being manufactured with the 

capability to adjust their power factor via a remote signal 

[5][6]. In fact, many reactive power control strategies have 

been proposed for distributed generation in distribution 

networks recently. There is a large focus on using local 

voltage measurements and coordinated local droop controls to 

provide reactive power support, similar to how generators 

share power deviations [7-9]. The benefit of this method is 

there is no need for a communication network. However, 

many modern distribution networks have communication 

networks to support other smart grid functions, which some 

research has proposed to repurpose to dispatch reactive power 

in a centralized fashion [10]. Other research propose hybrid or 

distributed approaches that take advantage of local 

communications to work around the scalability probable of 

centralized control in large networks [11].  

However, it is not certain from many of these papers how 

much the reactive power control will actually benefit the 

distribution network under varying conditions. The goal of 

this research is to quantify the benefit of the reactive power 

capabilities of the PV systems from a system-level viewpoint 

on any given network under different loading and insolation 

conditions. Since this goal requires solving a complex 

optimization problem many times, a linear approximation is 

developed in order to quickly reach a dispatch solution for any 

given network operating point. A comparison between a fully 

nonlinear optimization solution and the linearized approximate 

solution is made for a given daily load and insolation profile 

on the IEEE 13-bus feeder. 

This paper is organized as follows. Section II will develop 

the optimum reactive power dispatch problem that is to be 

considered. Section III will develop the solution methods for 

the optimization problem from Section II. Section IV will 

present and analyze the simulation results and Section V will 

provide future directions and conclusions. 

II. OPTIMUM REACTIVE POWER DISPATCH PROBLEM 

There are many different objectives that can be achieved by 

reactive power injection [7]. This research focuses on the 

objectives of voltage deviation from nominal and line loss 

minimization. These goals are the most desirable to utilities 

facing high PV penetration and the most easily met with 

reactive power support [3].  Each inverter is assumed to be 

dispatched from a centralized control with full knowledge of 

the distribution network. This allows for a best-case-scenario 

for the inverter resources that are available at a given system 

operating point. Inverter dynamics are assumed to be much 

faster than the time scale being analyzed, so only steady-state 

inverter operating points need to be found for each system 

operating point. The real power output of the inverters is 

assumed to track the maximum power point of the PV panels 

based on the amount of insolation and the inverter rating as 

follows: 

𝑝𝑖
𝑔

(𝑡) = 𝑆𝑖
𝑟𝑎𝑡𝑒𝑑𝐼(𝑡) (1) 

𝑞𝑖
𝑔,𝑚𝑎𝑥(𝑡) = √(𝑆𝑖

𝑟𝑎𝑡𝑒𝑑)2 − (𝑝𝑖
𝑔(𝑡))

2

 

                = 𝑆𝑖
𝑟𝑎𝑡𝑒𝑑√1 − 𝐼(𝑡)2 

(2) 



 

Under the assumption of “watt priority” control, the real 

power output, 𝑝𝑖
𝑔

, is a proportion of the inverter rating, 𝑆𝑖
𝑟𝑎𝑡𝑒𝑑, 

based on the insolation 𝐼 ∈ [0,1]  and the reactive power 

output, 𝑞𝑖
𝑔

, is constrained by the remaining inverter capacity 

available at each insolation level. Inverter overrating, high DC 

to AC plant design ratios, and power factor limits are not 

considered in this paper, but could be easily added.  

At each network operating point, the state of the system 

consisting of the distribution network and the controllable 

inverters can be described by the complex voltages of each 

network node, or 𝒙 = [𝑽 𝜽]𝑇 , which are determined by the 

solution of the power flow equations, 𝑮(𝒙, 𝒖, 𝒅) , with the 

controllable inputs to the system being the reactive power 

output of the inverters, 𝒖 = 𝒒𝒈 and 𝒅 = [𝒑𝒄 𝒒𝒄 𝒑𝒈]𝑇  being the 

particular state of the system load (real and reactive power 

consumption) and PV real power output (1). Using these 

definitions, the problem of optimizing reactive power injection 

to minimize a deviation from the nominal line voltage, 𝑉∗, and 

total line losses can be described by 

min
𝒖

𝐽(𝒙, 𝒖) = 𝑤1 ∑(𝑉𝑖 − 𝑉∗)2

𝑛

𝑖=1

+ 𝑤2 ∑ 𝐿𝑗

𝑚

𝑗=1

 

𝑠. 𝑡.       𝑮(𝒙, 𝒖, 𝒅) = 𝟎 

|𝑢𝑖| ≤ 𝑞
𝑖
𝑔,𝑚𝑎𝑥(𝑡) 

 

(3) 

Simply put, 𝐽  scores how well a potential solution, u, 

achieves the goals of minimizing feeder line voltage deviation 

from the nominal value and total line losses, 𝐿 , while not 

exceeding the available reactive power of each PV inverter 

(2). The relative importance of one goal over the other can be 

adjusted by the weights 𝑤1 , 𝑤2. Although the nonlinear system 

equations, 𝑮(𝒙, 𝒖, 𝒅) , have been shown to have a unique 

solution under normal operating conditions [12], the solutions 

that minimize (3) are not guaranteed to be unique. For 

instance, considering only the voltage regulation problem, if a 

system with n buses has p controllable inverters at separate 

buses of sufficient size to regulate the voltage of their bus 

equally on either side of the desired nominal voltage may 

achieve two solutions that satisfy (3). This situation is 

depicted in Fig. 1 where the two nodes depicted with stars 

have reactive power generation and the node between them 

does not. Two possible solutions that equally minimize 

voltage deviation are evident.  

By this logic, for an entire feeder, there exist at least 2𝑛−𝑝 

“optimum” solutions, which is not ideal for numerical 

methods that may have trouble converging on a minima. This 

emphasizes the need for the loss minimization term in (3). 

Loss minimization is often seen as less important in the 

introduction and seemingly adds more complexity to the 

problem, but without it a true optimum may not exist. Even 

with the additional term, relative “flatness” of the solution 

space makes finding a unique optimum solution to this 

problem difficult. Two methods to solve (3) are presented in 

the next section. 

III. OPTIMAL DISPATCH SOLUTION METHODS 

  The simultaneous voltage regulation and loss minimization 

problem (3) can be solved using a heuristic search algorithm 

with a nonlinear, unbalanced network. Additionally, a 

linearized, decoupled system of equations can be used in 

conjunction with classical optimal dispatch techniques. 

A. Particle Swarm Optimization (PSO) 

      Due to the nonlinear nature of (3), as well as the highly 

unbalanced nature of some distribution networks, such as the 

one considered in this paper, a closed form analytical solution 

is extremely difficult to achieve. However, there exist open-

source software that can readily solve 𝑮(𝒙, 𝒖, 𝒅) = 𝟎 for some 

given u and d. Taking advantage of this fact, the OpenDSS 

[13][14] tool  developed by EPRI can be used to set a certain 

network state, d, then attempt to find reactive power 

injections, u, that would result in the network state, x, that 

satisfies (3). As long as the solution space is smooth and 

continuous, the computational intelligence search method 

particle swarm optimization (PSO) can be used to find a 

solution that minimizes the objective function, 𝐽(𝒙, 𝒖) . It 

works by updating a simultaneous number of solution guesses, 

called “particles”, in directions that have proven to minimize 

the objective among the entire group [15]. However, PSO 

suffers from an inability to directly handle inequality 

constraints. As such, to handle the reactive power constraint of 

(3), a penalty function is added to the objective function that 

will increase the further a constraint is violated, as described 

in in (4)-(5). 

min
𝒖

𝐽̃(𝒙, 𝒖) = 𝐽(𝒙, 𝒖) + 𝜌 ∑ 𝜑
𝑘
(𝑢𝑘)

𝑝

𝑘

  (4) 

𝜑𝑗(𝑢𝑗) = {

0,                       |𝑢𝑗| ≤ 𝑞𝑗
𝑔,𝑚𝑎𝑥

(𝑡)

𝜇 +
|𝑢𝑗|

𝑞𝑗
𝑔,𝑚𝑎𝑥

(𝑡)
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5) 

Fortunately, PSO is good at handling non-linear objective 

functions, so long as 𝜌 in (4) is a relatively significant weight, 

and (5) is designed to “guide” the particles back to the 

admissible region. Ultimately, the particles converge to the 

global minimum if the algorithm is well designed, but the time 
Fig 1. Two possible feeder voltage profiles that satisfy (3) based on 

reactive power injections q1 and q3 at some distance, d, down the 

line. 



 

PSO takes to converge depends on the solution space. The 

solution space of (4) is “flat” in that large changes in inputs 

result in relatively small deviations in the objective function. 

 

B. Linearized Optimal Dispatch 

Nonlinear optimal solutions, like PSO, typically suffer from 

high computation times and may not be scalable to large 

distribution networks. Therefore, in order to broaden the scope 

and realism of networks checked, a fast, linearized approach is 

developed that provides an approximation that will still enable 

one to draw significant conclusions on a distribution 

network’s PV reactive power capabilities. The power flow 

equations, 𝑮(𝒙, 𝒖, 𝒅) = 𝟎 , of a radial distribution network 

may be linearized as such [7]: 

𝑃𝑗+1 = 𝑃𝑗 + Δ𝑝𝑗+1 

𝑄𝑗+1 = 𝑄𝑗 + 𝑞𝑗+1
𝑐 − 𝑞𝑗+1

𝑔
 

𝑉𝑗+1 = 𝑉𝑗 − 𝑟𝑗𝑃𝑗 − 𝑥𝑗𝑄𝑗  

(6) 

Each node of a network is represented by the three equations 

in (6) and is a function of the previous node in the network. 

The boundary conditions are that the powers 𝑃𝑛 = 𝑄𝑛 = 0 for 

a branch ending at node n and that voltage 𝑉0 = 𝑉∗, under the 

assumption that the substation bus is already regulated to the 

nominal voltage. The reactive load is 𝑞𝑖
𝑐  and the PV real 

power output is subtracted from the real load, or ∆𝑝𝑗 = 𝑝𝑗
𝑐 −

𝑝𝑗
𝑔

. The distribution line resistances and reactances are 𝑟𝑗 and 

𝑥𝑗. The network is approximated to be decoupled, so that (6) 

in fact represents all three phases of the distribution network 

as they may be solved simultaneously as individual single 

phase circuits. Under the classical dispatch problem of power 

systems, the minimum occurs under the following conditions 

[16]: 

 

𝑱̂ = 𝑱(𝒙, 𝒖) + 𝝀𝑇𝑮(𝒙, 𝒖, 𝒅)  (7) 

[
𝝏𝑱̂

𝝏𝒖
,

𝝏𝑱̂

𝝏𝝀
]

𝑻

= [𝟎, 𝟎]𝑻 (8)  

The function 𝑱(𝒙, 𝒖)  in (7) is the same objective to be 

minimized as in (3). Due to the form of (6) and the quadratic 

nature of 𝑱(𝒙, 𝒖) , the 𝝀  terms cancel out in (8) and the 

resulting system of equations is linear. It can then be shown 

through some derivation that the optimum point that satisfies 

(8) is achieved by the following matrix form: 

[

𝒖
𝑷
𝑸
𝑽

] = [

0 0        𝑹      𝑺
0 𝑰 − 𝑵       0      0
𝑼
0

0
𝑑𝑖𝑎𝑔(𝑟𝑖)

𝑰 − 𝑵   0
𝑑𝑖𝑎𝑔(𝑥𝑖) 𝑰 − 𝑵𝑇

]

−1

[

𝑻
𝚫𝒑
𝒒𝒄

𝑽𝒏

] (9) 

where N is the connectivity matrix that defines the topology 

of the network, U is the matrix that defines the PV locations 

in the network, 𝑽𝒏 = [𝑉∗ 0 0 ⋯ 0]𝑇 and 

𝑹 = {[(𝑰 − 𝑵)−1𝑼] ∘ [𝒓𝟏𝑇]}𝑇  (10) 

  

𝑺 = (𝑝𝑎𝑡ℎ𝑖 ∩ 𝑝𝑎𝑡ℎ𝑗) ∙ 2𝒙 (11) 

𝑻 = ∑(𝑝𝑎𝑡ℎ𝑖 ∩ 𝑝𝑎𝑡ℎ𝑗) ∙ 2𝒙

𝑖

 (12) 

The operator ∘ in (10) is the so-called Hadamard product of 

matrices, 𝟏 is a vector of ones, and 𝒓 is the vector of all line 

resistances. The sets pathi in (11)-(12) denote all lines that 

connect from the source node to node i and x is the vector of 

all line reactances. Under this definition, the matrix in (9) is 

constant for a given network topology and PV placement. 

Thus,  to test many different operating states, d, only the right-

hand vector needs to be changed. This means that the matrix 

in (9) only needs to be inverted once and therefore (9)-(12) 

represents a closed-form analytical solution to the linearized 

optimal dispatch of u. 

 

   The inequality constraints of (2) are handled as follows: 

1. Check for violations, if none, then solution is valid 

2. Set violated PV to 𝑞̂𝑖
𝑔

= 𝑠𝑖𝑔𝑛(𝑞𝑖
𝑔

) ∗ 𝑞𝑖
𝑔,𝑚𝑎𝑥

 

3. Set load at violated PV to 𝑞𝑖
𝑐 − 𝑞̂𝑖

𝑔
 

4. Remove violated PV row and column from (9) 

5. Solve reduced problem, go to step 1 

IV. SIMULATION RESULTS 

 

    Each solution method is used on the IEEE 13-bus 

distribution network, which is highly unbalanced. The daily 

real and reactive loading and insolation profile to be simulated 

is shown in Fig. 2 along with the resultant PV reactive power 

capability (shown at 75% penetration).  

 

     

The curves shown in Fig. 2 have been discretized into 15 

minute segments, totaling 95 operating states to be tested for 

each penetration level. Four penetration levels are tested as a 

percentage of peak load: 25%, 50%, 75%, and 100% for a 

Fig 2. Simulation real (green) and reactive (red) power load and 

insolation (cyan) and available reactive power at 75% penetration 

(blue) profiles. 



 

total of 380 operating points to be solved. The PV systems are 

assumed to be uniformly distributed throughout the feeder at 

each node where a load exists and are sized proportional to the 

penetration rate and the load to which they are connected. The 

PSO optimization is run in Matlab in conjunction with 

OpenDSS via a COM interface. The linearized optimization is 

run fully in Matlab. 

        The full nonlinear optimization via PSO took over 100 

hours of computation time to solve all 380 operating points 

and the results are presented in Figs. 3-4. The bar graph in Fig. 

3 shows the improved voltage deviation from the base case at 

each operating point in the day for the four different 

penetration levels that are tested. The voltage shown is the 

sum of all the node voltage deviations squared from nominal 

and then that value is subtracted from the base case sum of 

voltage deviations where no reactive power control is used, or  

𝛿𝑉2 = ∑(𝑉𝑖
𝑏𝑎𝑠𝑒 − 𝑉∗)

2
− ∑(𝑉𝑖

𝑄 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − 𝑉∗)
2
 (13) 

As such, a more positive value in Fig. 3 indicates a greater 

improvement over the base case (i.e. there are fewer total 

voltage deviations). Similarly, Fig. 4 shows the improvement 

in loss minimization between the full PSO optimized solution 

and the base case of no reactive power control. Again, a more 

positive number indicates a greater improvement over the base 

case. It is clear that there is an overall improvement at each 

time step for all penetration levels but at times there exists a 

trade-off between improvement of line losses and voltage 

profile. This trade-off can be controlled by manipulating the 

weights 𝑤1, 𝑤2  in (3). Clearly, the most solid improvement 

that the reactive power control of the PV inverters can achieve 

is during times of high loading. This seems counter-intuitive 

since this is also the time at which the PV inverters have the 

least reactive power capability under “watt priority” control, 

as most of their ratings are spent outputting real power. Of 

course the exact extent of the improvement is dependent on 

the interaction of the PVs with other voltage and reactive 

Fig 6. Linearized optimization line loss improvement over no 

reactive power control case. 

Fig 3. Nonlinear optimization line voltage deviation improvement 

over no reactive power control case. 

Fig 5. Linearized optimization line voltage deviation 

improvement over no reactive power control case. 

Fig 4. Nonlinear optimization line loss improvement over no reactive 

power control case. 



 

power control equipment, which remained static in these 

simulations and will require further research. However, the 

indication here that reactive power control can still play a 

large role in distribution network power quality management 

is very encouraging for the future of advanced inverter control 

schemes in distribution networks. Over all times and 

penetration levels, the PSO optimization had an average 

voltage deviation improvement of 0.424V per node, on a 

120V scale, and an average line loss improvement of 2.34kW 

per operating condition. 

    The linearized optimal solution, in stark contrast to the PSO 

solution, solved all 380 optimizations in less than one second 

and its results are presented in the bar graphs in Figs. 5-6. 

These graphs show the linearized optimal solution for voltage 

deviation and line loss improvement over the base case, 

respectively, similar to Figs. 3-4. It is also found that there is a 

positive improvement at every time and penetration rate in the 

simulation, although again a trade-off exists between the two 

minimization goals at times. Overall, the linearized approach 

is not as successful at achieving the optimization objectives, as 

is to be expected since it takes advantage of many 

approximations. The linearized method had a total voltage 

deviation improvement of 0.338V per node, on a 120V scale, 

and an average line loss improvement of 1.89kW per 

operating condition. However, considering the drastic 

reduction in computational time, these results are very positive 

as they are relatively close to the nonlinear solution. It is 

encouraging that this approximation may yield great insights 

into the reactive power control capabilities of many 

distribution networks under many PV distributions and 

operating conditions in future simulations. Perhaps some 

better approximation of (6) may yield even better results. 

    Other comparisons worth noting are that between all the 

results, it is clear that penetration level plays a significant role 

in control of reactive power and that an increase in penetration 

has differing impacts on the two minimization goals. That is to 

say an increase in PV penetration rate seems to result in 

greater line loss improvement over the base case, although 

there appear to be diminishing returns. At same time, 

increasing PV penetration seems to have a negative impact on 

the voltage deviation improvement. This is perhaps mostly 

due to the voltage rise effect of the large PV power output that 

is positively countering the voltage sag of high loading for the 

larger penetration rates. It just so happens that this is a positive 

impact for this feeder, as a lightly loaded network would be 

negatively impacted by the voltage rise and may result in a 

greater improvement in the voltage profile due to reactive 

power control as PV penetration increases. 

    To clarify this observation, the average feeder voltages for 

each operating condition are plotted in Fig. 7. The voltages for 

the base case can be seen increasing with PV penetration 

during the middle of the day while the PVs are outputting real 

power. This increase counteracts the voltage sag that would 

otherwise exist with no PV output. However, even though 

Figs. 3,5 show a diminishing impact of the inverters to 

regulate voltage as penetration increases, the regulated 

voltages in Fig. 7 show that this is largely due to there being 

little need for regulation. Indeed, the linear dispatch nearly 

perfectly regulates the voltage for most of the day for a PV 

penetration greater than 50%. 

 

  

   Lastly, there is consistently a trade-off during nighttime 

hours in Figs. 3-6 between the two objectives. It would appear 

that often line losses are incurred to improve the voltage 

profile. Future research could study the weighting of the 

minimization goals in terms of what is desirable at a given 

operating condition. It may be the case that dynamic weights 

can be given as a function of operating condition. 

V. CONCLUSIONS 

   This paper presents the formulation of an optimal reactive 

power dispatch of distributed PV inverters on an unbalanced 

distribution network. A nonlinear solution using OpenDSS 

and PSO is presented as well as a linearized approximate 

solution that requires very little computation time. The two 

methods are compared and the results of the linearized 

approach are deemed to yield a good approximation of the 

capability of PV inverters to regulate voltage and minimize 

line losses. Having a good approximate solution is important 

in order to pursue future simulations of large numbers of 

distribution network topologies, PV placement distributions, 

and network operating conditions. These future studies will 

lend better insight into the capabilities of PV inverters to 

provide voltage regulation and line loss minimization as well 

as which network conditions are favorable to achieve these 

goals. 

Fig 7. Average feeder voltage at different operating conditions for 

(top) base case, (middle) linearized optimum, and (bottom) nonlinear 

optimum. 
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